skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Pingping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spike train decoding is considered one of the grand challenges in reverse-engineering neural control systems as well as in the development of neuromorphic controllers. This paper presents a novel relative-time kernel design that accounts for not only individual spike train patterns, but also the relative spike timing between neuron pairs in the population. The new relative-time-kernel-based spike train decoding method proposed in this paper allows us to map the spike trains of a population of neurons onto a lower-dimensional manifold, in which continuous-time trajectories live. The effectiveness of our novel approach is demonstrated by comparing it with existing kernel-based and rate-based decoders, including the traditional reproducing kernel Hilbert space framework. In this paper, we use the data collected in hawk moth flower tracking experiments to test the importance of relative spike timing information for neural control, and focus on the problem of uncovering the mapping from the spike trains of ten primary flight muscles to the resulting forces and torques on the moth body. We show that our new relative-time-kernel-based decoder improves the prediction of the resulting forces and torques by up to 52.1 %. Our proposed relative-time-kernel-based decoder may be used to reverse-engineer neural control systems more accurately by incorporating precise relative spike timing information in spike trains. 
    more » « less